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1. Introduction

Family problems of elementary particles have shown to be a challenge since one realizes

that the strong interaction respects isospin, lepton and baryon numbers conservation. Due

to excess of baryons over antibaryons in our universe the baryon number conservation

were pointed to be broken [1]. Later Weinberg points to lepton and baryon numbers

conservations do not need to be a prior assumption in the framework of Grand Unified

Theories (GUT) where the processes are mediated by superheavy particles with mass M ≃
1014 GeV [2]. However the non observation of proton decay [3], Electric Dipole Moment

of elementary particles [4] and neutron-antineutron oscillations [5] points to a non trivial

violation mechanism of these symmetries.

To this puzzle one can joint questions about the mass generation mechanism which

are able to describe the observed mass hierarchy of particles and mixing angles. A known
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mechanism is based on Yukawa couplings between fermions and scalars of the models (Stan-

dard Model (SM), Supersymmetric models (SUSY) and GUT) but among the possibilities

of such couplings there are sources for dangerous Flavor Change Neutral Currents (FCNC)

processes, like proton decay and neutron-antineutron oscillation.

Besides, the recent data from neutrinos experiments add more questions: What is their

mass scale? Which is their mass organization pattern?

The SM describes the family structure as doubletes of SU (2) [6] and it has been able

to described most of present day data. In the case of mass generation mechanism, SM tells

us that fermions obtain their masses through Yukawa couplings with Higgs doublet while

neutrinos have no mass. However the values of these couplings constants remain arbitrary.

There are also other aspects which cannot be explain in the framework of SM, e.g., the

non-leptonic without strangeness changing processes. In this case the problem is not due

to family structure, it is the interplay between strong and week interaction. The strong

repulsive core keeps the nucleons away from each other at a distance enough to prevent

the gauge bosons exchanges between quarks [7]. In this case one has to deal with nucleons

and pions degrees of freedom instead of quarks and gluons. A reliable and consistent

description with underline principles is obtained in the framework of Chiral Perturbation

Theory (ChPT) [8].

In order to determine the values of Yukawa coupling constants or at least to find a way

to constrain them there are approaches based on GUT +SUSY +Gf [9] or SM +Gf [10]

where Gf is an additional family symmetry required in order to constrain these constants.

On GUT +SUSY +Gf approaches, the masses of fermions are degenerate at GUT scale

and a mass generation mechanism based on renormalization group equations gives rise to

the hierarchy pattern observed at Fermi scale. One classifies quarks as u type (t, c, u) and

d type (b, s, d) and the hierarchy pattern follows a power law, e.g.: for horizontal hierarchy:

mt : mc : mu ∼ 1 : εu : ε2
u εu ≃ 500−1

mb : ms : md ∼ 1 : εd : ε2
d εd ≃ 50−1

mτ : mµ : mε ∼ 1 : εe : ε2
e εe ≃ 50−1

(1.1)

where mu and md are the current quark mass.

Another source of flavor problems is the misalignment of fermion- sfermion couplings.

It is due to the transformation that diagonalizes the fermion mass matrix does not si-

multaneously diagonalize the corresponding sfermion mass squared matrices. The lack of

observation of the decays µ → eγ, τ → µγ and τ → eγ put some constraints on the lepton-

slepton coupling. On the other hand, processes like b → sγ decay and the measurements

of mass difference in B0B̄0 and D0D̄0 yield constraints on the quark-squark couplings, the

most stringent restrictions here come from one knows about K0K̄0 mixing.

In general there are three ways to suppress this problem [11, 12]:

(a) Arrange for degeneracy or universality of masses of sfermions with the same quantum

numbers. In this scenario the K0K̄0 mixing expression is suppressed because the

∆md̃ı
is very small;
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(b) One can assume an alignment between the fermion and sfermion mass matrices so that

both can be made diagonal in the same basis. In this case, the fermion and sfermion

mass matrices is said to be aligned. Such an alignment is included in models with

so-called horizontal symmetries which links the various generations;

(c) The third choice is to take the masses of sfermions of the first two generations to

be very large, in the multi-TeV range. This solution to the SUSY flavor problem is

known as decoupling.

One may also consider various combinations of these options. The flavor violating

contributions have been parametrized by Gabbiani et al [13] in the framework of mass

insertion method. In this approach one works in a basis where the mass matrix of fermions

of a given charge as well as the corresponding fermion-sfermion-neutral gaugino couplings

are diagonal in flavor space. Flavor violation is then described by flavor non-diagonal

entries and the constraints are expressed as bounds on the dimensionless quantities.

The first attempt to apply the radiative mechanism of mass generation to the light

fermions was suggested by S. Weinberg [14, 15]. Later L. Ibañez shows if SUSY is spon-

taneously broken one generates only tiny small fermion masses radiatively [16]. In order

to restrict this mechanism to the first family a discrete symmetry is applied into SUSY

models in refs. [17, 18]. From the analysis performed by Ferrandis [19, 20] the radiative

mechanism of mass generation of fermions is allowed through sfermion-gaugino loops and

the observed flavor physics is obtained if “the supersymmetry breaking terms receive small

corrections, which violate the symmetry of the superpotential”.

In a previous work [21] we followed a mass pattern of Chiral descriptions [8] where a

Chiral scale (Λχ = 1 GeV) allow us to classify the quarks as light ones ( u, d and s) and

heavy ones (c, t and b). Thus we introduced a Z ′
2 symmetry in the MSSM and in the

SUSY Left-Right Models in order to allow the light quarks acquire mass only by means of

radiative mass generation mechanism [17, 18, 22] while the FCNC problems are avoided

. The Chiral mass hierarchy pattern and a consistent picture with experimental data of

Cabibbo-Kobayashi-Maskawa (CKM) matrix were obtained. We also showed that under

Z ′
2 symmetry, a similar pattern for electron, muon and tau can be obtained. The heavy

leptons (µ and τ) acquire mass at tree level while the electron acquires mass at 1-loop level

. We also assumed the alignment of squarks with the quarks and due to the absence of

inter family mixing of squarks each quark receives contribution only from its corresponding

supersymmetric partner and in order to describe the mass gap between strange and non

strange quarks we need to consider the strange supersymmetric partner heavier than non-

strange supersymmetric partners.

In this work we remove the assumption of alignment between quark and squarks sectors

and we explore the effects of Z ′
2 symmetry1 on the masses of sfermions in section 3. In the

section 4 the mass of light fermions are re-evaluated and the contribution of sfermions are

still different to each mass of light fermions.

1We review this symmetry in section 2
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We present at section 4.2 the masses of the light fermions. From these results, we can

explain why the quarks u and d are lighter than the s quark. Our notation is shown in the

appendix A. The details of computations are presented in our appendices B–D.

2. Z ′

2
symmetry in the MSSM

In our previous work, we introduced the following Z ′
2 symmetry on the Lagrangian of the

MSSM [21]

d̂c
2L −→ −d̂c

2L, d̂c
3L −→ −d̂c

3L, ûc
3L −→ −ûc

3L, l̂c3L −→ −l̂c3L, (2.1)

while the others superfields of the model2 are even under this symmetry.

The invariant superpotential under Z ′
2 and R-parity symmetries is given by

W
Z′

2even
R−inv = µĤ1Ĥ2 +

3∑

ı=1

yd
ı1Q̂ıLĤ1d̂

c
1L +

3∑

ı=1

2∑

=1

yl
ıL̂ıLĤ1l̂

c
L +

3∑

ı=1

2∑

=1

yu
ıQ̂ıLĤ2û

c
L. (2.2)

The R-parity symmetric but Z ′
2 forbidden terms are given by:

W
Z′

2odd
R−inv =

3∑

ı=1

3∑

=2

yd
ıQ̂ıLĤ1d̂

c
L +

3∑

ı=1

yl
ı3L̂ıLĤ1l̂

c
3L +

3∑

ı=1

yu
ı3Q̂ıLĤ2û

c
3L. (2.3)

As a consequence of eq. (2.2), the fermions u, d, s and e are prevented to acquire mass

at tree level in a way similar as presented in refs. [17 – 20]. These fermions are massless

due to the absence of the terms showed in eq. (2.3). On the other hand, Supersymmetric

non-renormalization theorem guarantee that corrections to the fermions masses are very

small, even if the discrete symmetry (2.1) is broken.

An interesting question we don’t deal in our first work is: How Does our Z ′
2 symmetry

act on the sfermion sector? The answer can be obtained from eq. (2.1). The behavior of

scalar components of chiral superfields under Z ′
2 symmetry are given by:

d̃c
2 −→ −d̃c

2, dc
2 −→ −dc

2, d̃c
3 −→ −d̃c

3, dc
3 −→ −dc

3,

ũc
3 −→ −ũc

3, uc
3 −→ −uc

3, l̃c3 −→ −l̃c3, lc3 −→ −lc3, (2.4)

while all other fields of the model are even. It worth noting that the Z ′
2 symmetry has the

same role as in the fermion sector: it forbids the flavor mixing between the third family

and the other two families of sfermions.

As we show below, we also obtain the following features: because the couplings between

the squarks from the third family with the other two families are forbidden, the assumption

of alignment between quark and squark sector can be removed. Then a particular texture

for mass matrix of squarks consistent with physical bounds comes out. Therefore the Z ′
2

symmetry help us to keep under control the dangerous FCNC problems and we still obtain

the mass hierarchy pattern without any additional assumptions.

2Our notation and the particles contents of this model are shown in appendix A.
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Another feature in the Z ′
2 symmetric case is the null value for EDM of electron and

of neutron. Because of the symmetry the left-right mixing angle vanished in the sleptons

and squarks sectors. These mixing angles contribute to the EDM calculation and in this

case there are no contributions to the EDM coming from the MSSM. Therefore, the only

contribution to the EDM of these particles come from SM.

3. Masses of the supersymmetric particles

The discussion in this section is based on review articles of refs. [11, 12, 23 – 25]. We start

with a general study of mass generation of supersymmetric particles. The reason to perform

this study is due to the fact that masses and mixing of sparticles are of crucial importance

both experimentally and theoretically: i) they determine the properties of the sparticles

searched for and ii) they are directly related to the question of how SUSY is broken [11, 12].

Once SU(2)L ⊗ U(1)Y symmetry is broken, fields with the same SU(3)c ⊗ U(1)em
quantum numbers (and, of course, R-parity, Z ′

2 and spin) can mix with each other. In the

framework of Standard Model, B0 and W i mix to γ, Z0, and W± is an example of this kind

of mixing. Also the Dirac masses of quarks and leptons can be understood as such mixing

terms. For the case of MSSM, this mixing also affects squarks, sleptons, Higgs bosons, as

well as gauginos and higgsinos. The only exception is the gluino, which is the only color

octet fermion in the model.

3.1 Super-CKM basis for Sfermions

There is no longer alignment assumption and we perform the diagonalization procedure in

the Super-CKM (SCKM) basis. Here we present the relevant equations for our work and

a detailed discussion can be found at ref. [26].

Likewise we have done in our superpotential,3 we separate the soft SUSY breaking

terms into two terms:

Lsoft = LZ′

2
even

soft + LZ′

2
odd

soft (3.1)

where LZ′

2even
soft is the even component under Z ′

2 (eq. (2.4)) and it reads:

LZ′

2even
soft = −1

2




8∑

ı=1

mg̃λ
ı
Cλı

C +

3∑

p=1

mλλp
Aλp

A+m′λBλB+h.c.



−




3∑

ı=1

3∑

=1

L̃⋆
ıL

(
M2

L

)
ı

L̃L

+
2∑

ı=1

2∑

=1

l̃c⋆ıL
(
M2

l

)
ı

l̃cL + l̃c⋆3L

(
M2

l

)
33

l̃c3L +
3∑

ı=1

3∑

=1

Q̃⋆
ıL

(
M2

Q

)
ı

Q̃L

+

2∑

ı=1

2∑

=1

ũc⋆
ıL

(
M2

u

)
ı

ũc
L + ũc⋆

3L

(
M2

u

)
33

ũc
3L + d̃c⋆

1L

(
M2

d

)
11

d̃c
1L

3See eqs. (2.2), (2.3)
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+

3∑

ı=2

3∑

=2

d̃c⋆
ıL

(
M2

d

)
ı

d̃c
L



−M2
1 H̃⋆

1H̃1−M2
2 H̃⋆

2 H̃2−M2
12 (H1H2+h.c.)

−




3∑

ı=1

2∑

=1

H1L̃ıL

(
Al
)

ı
l̃cL +

3∑

ı=1

2∑

=1

H2Q̃ıL (Au)ı ũc
L

+

3∑

ı=1

H1Q̃ıL

(
Ad
)

ı1
d̃c
1L + h.c.

]
. (3.2)

The m′, mλ, and mg̃ are U(1), SU(2) and SU(3) gaugino masses respectively. The mass

terms of Higgs fields are denoted by M2
1 , M2

2 , and M2
12. The symbol (⋆) in a scalar field is

the charge conjugate of this field, it means we take their anti-particle.

The components whose also break Z ′
2 symmetry (LZ′

2
odd

soft ) are given by

LZ′

2
odd

soft = −
[

2∑

ı=1

l̃c⋆ıL
(
M2

l

)
ı3

l̃c3L +
2∑

ı=1

ũc⋆
ıL

(
M2

u

)
ı3

ũc
3L +

3∑

ı=2

d̃c⋆
ıL

(
M2

d

)
ı1

d̃c
1L

]

−




3∑

ı=1

3∑

=2

Ad
ıH1Q̃ıLd̃c

L+

3∑

ı=1

Au
ı3H2Q̃ıLũc

3L+

3∑

ı=1

Al
ı3H1L̃ıLl̃c3L+h.c.



. (3.3)

It worth remembering the scalar masses M2
Q, M2

u , M2
d , M2

L, and M2
l are in general 3×3

hermitian matrices in generation space, while Au, Ad, and Al are general 3×3 matrices.

Allowing all the parameters in eqs. (3.2), (3.3) to be complex, we end up with 124 masses,

phases and mixing angles as free parameters of the model.

Constraints from FCNC processes also restrict the form of the soft SUSY breaking

trilinear terms Au, Ad and Ae. For example, the data from K0K̄0 mixing require the

off-diagonal entries of the Ad matrix to be small.

Besides, these terms make contributions to fermion masses [11, 12, 17 – 21]. The re-

quirement that contributions to the fermion masses to be smaller than the fermion masses

themselves put tight constraints to the magnitudes of the A-terms.

As we said at section 2 if our Z ′
2 is hold there is no contribution to the EDM. However

we have to break this symmetry in order to generate masses to the fermions and we also

allow contributions to the EDM. Limits on the imaginary part of the soft SUSY breaking

A-terms can be obtained from experimental upper limits of electron and neutron EDM [12]

de ∝
√

ℑ(Ae)v1 < 6 · 10−4mẽ,

dn ∝
√

ℑ(Ad)v1 < 0, 002m
d̃
. (3.4)

Here, we consider the most general scenario which is called in the literature as non-

minimal flavor scenario. We follow reference [26] and the sfermions fields are rearranged

into the following vector with six component:

f̃T =
(
f̃ıL f̃ıR

)
, (3.5)
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where each f̃ıL, f̃ıR is a three component column vector in generation space,4 f = u, d, l

and ı = 1, 2, 3. Then we can write sfermion mass term of the MSSM Lagrangian in the

following way:

f̃ †M2
f̃
f̃ , (3.6)

where M2
f̃

are 6×6 sfermion mass matrices — one for up-type, one for down-type squarks

and one for charged sleptons.

The general squared mass matrix of sfermions can be written as a 2 × 2 Hermitian

matrix of 3 × 3 blocks in the space spanned by the vector of eq. (3.5) [11]

M2
f̃

=

(
M2

f̃LL

M2
f̃LR

M2†

f̃LR

M2
f̃RR

)

. (3.7)

The squared mass matrix of sfermions are diagonalized by pairs of 3×6 matrices as follows:

diag(m2
eu1

. . . m2
eu6

) =
(

W ũL† W ũR†
)
M2

ũ

(
W ũL

W ũR

)
, (3.8)

diag(m2
ed1

. . . m2
ed6

) =
(

W d̃L† W d̃R†
)
M2

d̃

(
W d̃L

W d̃R

)
, (3.9)

diag(m2
el1

. . . m2
el6

) =
(

W ẼL† W ẼR†
)
M2

l̃

(
W ẼL

W ẼR

)
. (3.10)

However, it is common to rotate quarks to their mass eigenstates basis and to rotate

squarks in exactly the same way as quarks. This is the so-called Super-CKM (SCKM)

basis. It is a suitable basis for the study of flavor violation process since all the unphysical

parameters in the Yukawa matrices have already been rotated away, see at ref. [26].

3.1.1 The squarks

Here we present the constraints on the elements of squarks mass matrix due to our Z ′
2

symmetry. It is worth recalling the hypothesis of misalignment between the squark and

quark mass matrices is present in the most general parameterization of the MSSM and

it generates dangerous FCNC effects in conflict with experiment. Specially, the data on

K0−K̄0 and D0−D̄0 mixing impose severe constraints on the mixing involving the u-squark

and d-squark [13].

However, as discussed at the beginning of this section, only particles with the same

quantum number can mix with each other. On the other hand, H1,2 are even under the Z ′
2

symmetry. Thus Z ′
2 symmetry is maintained in the presence of the spontaneous breaking

of gauge symmetry as can be shown by eq. (3.2).

It is useful to stress the parameters Ad
ib and Au

i3 (eq. (3.3)) should be zero because they

are not allowed by our Z ′
2 symmetry. This means the third family does not mix with other

two families of squarks, then the following matrix elements of eq. (3.7) vanished:

(M2
f̃LR

)31 = (M2
f̃LR

)32 = (M2
f̃LR

)34 = (M2
f̃LR

)35 = 0, (3.11)

(M2
f̃LR

)61 = (M2
f̃LR

)62 = (M2
f̃LR

)64 = (M2
f̃LR

)65 = 0,

4We want to emphasize that f̃ is the superpartner of any matter fermion field f .
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and we obtain the same texture of mass matrix of squark as in reference [27], but only with

the requirement of invariance under Z ′
2:

M2
ũ{d̃}

=





M2
L̃c{s}

(M2
Ũ{D̃}

)LL 0 mc{s}Ac{s} (M2
Ũ{D̃}

)LR 0

(M2
Ũ{D̃}

)LL M2
L̃t{b}

0 (M2
Ũ{D̃}

)RL mt{b}At{b} 0

0 0 M2
L̃u{d}

0 0 mu{d}Au{d}

mc{s}Ac{s} (M2
Ũ{D̃}

)RL 0 M2
R̃c{s}

(M2
Ũ{D̃}

)RR 0

(M2
Ũ{D̃}

)LR mt{b}At{b} 0 (M2
Ũ{D̃}

)RR M2
R̃t{b}

0

0 0 mu{d}Au,{d} 0 0 M2
R̃u{d}





,

(3.12)

with

M2
L̃q

= M2
Q,q + m2

q + cos 2β(Tq − Qqs
2
W )M2

Z ,

M2
R̃{u,c,t}

= M2
u,{u,c,t} + m2

u,c,t + cos 2βQts
2
W M2

Z ,

M2
R̃{d,s,b}

= M2
d,{d,s,b} + m2

d,s,b + cos 2βQbs
2
W M2

Z , (3.13)

Au,c,t =

3∑

ı=1

Au,c,t
3ı,2ı,1ı − µ cot β , Ad,s,b =

3∑

ı=1

Ad,s,b
3ı,2ı,1ı − µ tan β ,

where mq, Tq, Qq are, respectively, the mass, isospin, and electric charge of the quark q, MZ

is the mass of Z-boson, sW ≡ sin θW and θW is the electroweak mixing angle. The masses

mu and md are null, we keep them here only to show that in diagonalization procedure

they give rise to the mixing in the third family.

The flavor-changing entries are contained in

(M2
eU
)LL = VUL

M2∗

Q V †
UL

, (M2
eU
)RR = VUR

M2∗
u V †

UR
, (M2

eU
)LR = v∗uVUL

A∗
uV †

UR
,

(M2
eD
)LL = VDL

M2∗

Q V †
DL

, (M2
eD
)RR = VDR

M2∗

d V †
DR

, (M2
eD
)LR = v∗dVDL

A∗
dV

†
DR

.
(3.14)

Eq. (3.14) demonstrates the needs of all four matrices VU,DL,R
even though the observed

CKM matrix only constraints one combination of them.

Each one of general six by six mass matrix of eq. (3.12) can be split into two matrices:

one of order four and the other of order two. The order four matrix corresponds to the mass

and mixing of squarks of first and second families while the masses and mixing of squarks

of third family constitute the mass matrix of order two. One performs the diagonalization

procedure of the matrices in the following way:

(a-) Mixing between the first and second family of the squarks

The four component vectors for up-squark and down-squarks are, respectively,

(ũ1L,ũ2L, ũ1R,ũ2R) and (d̃1L,d̃2L d̃1R,d̃2R). Thus the squark squared mass matri-

ces are given by:

M2
ũ{d̃}

=





M2
L̃,c{s}

(M2
Ũ{D̃}

)LL mc{s}Ac{s} (M2
Ũ{D̃}

)LR

(M2
Ũ{D̃}

)LL M2
L̃t{b}

(M2
Ũ{D̃}

)RL mt{b}At{b}

(M2
Ũ{D̃}

)LR (M2
Ũ{D̃}

)RL M2
R̃c{s}

(M2
Ũ{D̃}

)RR

(M2
Ũ{D̃}

)LR mt{b}At{b} (M2
Ũ{D̃}

)RR M2
R̃t{b}




. (3.15)

– 8 –



J
H
E
P
0
1
(
2
0
0
8
)
0
7
2

In order to diagonalize M2
ũ{d̃}

one requires two rotation 4 × 4 matrices: one for the

up-squarks (R(u)) and one for down-squarks (R(d)). Thus the squark mass eigenstates

(q̃′α) and the interaction squark eigenstates (q̃α) are related by,

q̃′α =
∑

R
(q)
αβ q̃β , (3.16)

where explicitly the matrices reads

ũ′
α =





c̃L

c̃R

t̃L
t̃R




, d̃′α =





s̃L

s̃R

b̃L

b̃R




, ũβ =





ũ1L

ũ2L

ũ1R

ũ2R




, d̃β =





d̃1L

d̃2L

d̃1R

d̃2R




. (3.17)

One obtains the squark mass eigenvalues and eigenstates after the diagonalization

procedure as indicated in ref. [28].

(b-) u and d-squarks

In the symmetric case under Z ′
2 the mass matrix is trivially diagonal and q̃3L does

not mix with q̃3R, as a consequence the contribution of the squark sector to the EDM

is null.

The interesting case comes from the soft breaking terms of eq. (3.3). For the third

generation these terms are given by

M2
Q,3ũ

⋆
3Lũ3L+M2

u,uũ⋆
3Rũ3R+Au

33ũ3Lũ3Rv2+M2
Q,3d̃

⋆
3Ld̃3L+M2

d,dd̃
⋆
3Rd̃3R+Ad

33d̃3Ld̃3Rv1

(3.18)

they give the mixing between left-right part of the u-squark and d-squark sector.

This mixing has two important consequences:

The first one is the mass of the squarks of the third family. The off diagonal entries

are proportional to the mass of quarks as shown below,

M2
q̃ =

(
m2

q̃L
aqmq

aqmq m2
q̃R

)

= (Rq̃)

(
m2

q̃1
0

0 m2
q̃2

)

Rq̃, (3.19)

where q̃ = ũ, d̃. The weak eigenstates q̃L and q̃R are thus related to their mass

eigenstates q̃1 and q̃2 by
(

q̃1

q̃2

)
= Rq̃

(
q̃3L

q̃3R

)
, Rq̃ =

(
cos θq̃ sin θq̃

− sin θq̃ cos θq̃

)
, (3.20)

with θq̃ the squark mixing angle. The mass eigenvalues are given by

m2
q̃1,2

=
1

2

(
m2

q̃L
+ m2

q̃R
∓
√

(m2
q̃L

− m2
q̃R

)2 + 4 a2
qm

2
q

)
. (3.21)

By convention, we choose q̃1 to be the lightest mass eigenstate. Note that mq̃1
≤

mq̃L,R
≤ mq̃2

. For the mixing angle θq̃ we require 0 ≤ θq̃ < π. Thus, we have

cos θq̃ =
−aqmq√

(m2
q̃L

− m2
q̃1

)2 + a2
qm

2
q

, sin θq̃ =
m2

q̃L
− m2

q̃1√
(m2

q̃L
− m2

q̃1
)2 + a2

qm
2
q

. (3.22)

This mixing is important because it generates contributions to the EDM.
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3.1.2 The masses of selectrons

The procedure is the same as in the case of squarks. The mixing in the selectron sector

comes from the following Z ′
2-odd terms,

M2
L,3l̃

⋆
3L l̃3L + M2

l,l l̃
⋆
3R l̃3R + Al

33 l̃3L l̃3Rv1, (3.23)

The relations among mass eigenstates and interaction eigenstates of selectron are,

(
ẽ1

ẽ2

)

= Rẽ

(
l̃3L

l̃3R

)

, Rẽ =

(
cos θẽ sin θẽ

− sin θẽ cos θẽ

)

, (3.24)

with θẽ the selectron mixing angle. The mass eigenvalues are the same as in the case of

third family of squarks, therefore their masses are given by the eq. (3.21) but with label q

instead of e.

3.2 The masses of gluinos

It is well known gluinos are the supersymmetric partners of the gluons. Therefore gluinos

are the color octet fermions in the model. On other hand, as the SU(3)c group is unbroken

gluinos can not mix with any others particles in the model, then they are already mass

eigenstates.

Their mass, from eq. (3.2), can be written as

Lgluino
mass =

mg̃

2
¯̃gg̃ (3.25)

so that its mass at tree level is mg̃ = |M3|, where

g̃a =

(
−ıλa

C

ıλa
C

)

, a = 1, . . . , 8, (3.26)

is the Majorana four-spinor defining the physical gluinos states.

4. The mechanism of mass generation

Once Z ′
2 symmetry is softly broken the fermions are allowed to interact with their respective

superpartners and gluinos (see at appendix B). However, the third family is already dis-

connected from other two families and we show that the removal of alignment assumption

only changes the content of strange quark mass.

4.1 Light fermion masses

The u-quark can only interact with u-squark (defined at eq. (3.20)). However, squarks

can couple with gluino and also with bino, the supersymmetric partner of the gauge boson

of U(1). First we want to compare their contribution to the 1-loop mass diagram which

generates mass to the u quark.
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uc
LuL λa

C λa
C

gs

⊗
mg̃

gs

ũıR
ũıL

⊗
m2

ũı

Figure 1: The diagram which gives mass to quark ul, λa
C is the gluino while ũi, i = 1, 2, is the

u-squark.

dc
LdL λa

C λa
C

gs

⊗
mg̃

gs

d̃ıR
d̃ıL

⊗
m2

d̃ı

Figure 2: The diagram which gives mass to quark d, λa
C is the gluino while d̃i, i = 1, 2, is the

d-squark.

In order to estimate their contribution, it is useful to use the Supersymmetry Parameter

Analysis Convention (SPA). Wchich is based on a consistent set of conventions and input

parameters [29 – 31], given at appendix C. In all the scenarios is easy to see that

g2
smg̃ ≫ g′2m′, (4.1)

keep this in mind one can neglect the contribution of the bino.

The interaction between the squarks-gluino-quarks is given by eq. (B.3). In figure 1

we depict the loop diagram contribution for the mass of u - quark which gives rise to the

following expression as a function of loop integrals5 (see at eq. (D.1)):

Mu = g2
smg̃ sin(2θũ)

2∑

ı=1

B0(mũı ,mg̃). (4.2)

Analogously we obtain for the mass of d-quark, see figure 2 ,the following expression6

Md = g2
smg̃ sin(2θ

d̃
)

2∑

ı=1

B0(md̃ı
,mg̃). (4.3)

These expressions (4.2), (4.3) agree with the results presented in refs. [17 – 21].

Likewise the quark case, selectron (eq. (3.24)) interacts with electron (eq. (B.6)) and

this interaction is the source for the leading contribution depicted in figure 3. We obtain

the following expression for the electron mass

Me = g′2 sin(2θẽ)m
′

2∑

ı=1

B0(mẽı ,m
′). (4.4)

5mũ and mg̃ are the masses of the u-squark and gluinos respectively.
6md̃ is the d-squark mass.
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ec
LeL λB λBg′

⊗m
′

g′

ẽıR
ẽıL

⊗
m2

ẽı

Figure 3: The diagram which gives mass to electron, λB is the bino while ẽi, i = 1, 2, is the

selectron.

sRsL �aC �aCgs 
m~g gs~d�R
~d�L m2~d� sRsL �aC �aCgs 
m~g gs( ~d�+2)R
( ~d�+2)L m2~d�+2

sRsL �aC �aCgs 
m~g gs( ~d�+2)R
~d�L�Æd��+2�LRM2SUSY
Figure 4: The diagram which gives mass to quark s, λa

C is the gluino while s̃i and b̃i, i = 1, 2, are

the squarks s-squark and sbottom, respectively.

Same as one finds in our first work, the light fermions can couple only with their respec-

tive supersymmetric partners. In contrast, now the strange quark can couple with s and

b-squark, defined at eq. (3.16). This is a source of flavor non-diagonal sfermion mass matrix.

We define the dimensionless flavor-changing parameters (δu,d
ı )AB (A,B = L,R) from

the flavor off-diagonal elements of the squark mass matrices ( eq. (3.12)), in the following

way: first, we set all diagonal entries M2
Q,q and M2

u(d),q to be equal to the common value

M2
SUSY, then we normalize the off-diagonal elements to M2

SUSY [13, 26 – 28],

(δd(u)
ı )AB =

(M2
Ũ(D̃)

)ıAB

M2
SUSY

, (ı 6= , ı,  = 1, 2 A,B = L,R). (4.5)

Due this fact the leading contribution to the mass of s-quark is shown in figure 4.

Taking into account eq. (B.4) one obtains the following expression

Ms = 2g2
smg̃

2∑

α=1

[
R

(d)
1α R

(d)
2α B0(md̃α

,mg̃) + R
(d)
1α+2R

(d)
2α+2B0(md̃α+2

,mg̃)

+ R
(d)
1α R

(d)
2α+2

(
δd
αα+2

)

LR
M2

SUSYI(m
d̃α

,m
d̃α+2

,mg̃)
]
. (4.6)

It worth noting that the content of mass of s quark is very different from the content of

others two light quarks, eqs. (4.3), (4.6), and we are able to make the strange quark heavier

than non-strange quarks.

In fact, even if we consider all the squarks are degenerate in mass the strange quark

still is heavier than non-strange quarks:

ms > 4md, (4.7)
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This relation is in agreement with recent experimental data [32]

17 ≤ ms

md

≥ 22. (4.8)

4.2 Final expressions

As it is clear in eqs. (4.2), (4.3), (4.4) we have to perform only one integral. From eq. (D.6),

we can rewrite the light fermion mass expressions as follow:

Mu =
g2
smg̃ sin(2θũ)

16π4

2∑

ı=1

m2
ũı

(m2
ũı

− m2
g̃)

ln

(
m2

ũı

m2
g̃

)
,

Md =
g2
smg̃ sin(2θd̃)

16π4

2∑

ı=1

m2
d̃ı

(m2
d̃ı
− m2

g̃)
ln

(
m2

d̃ı

m2
g̃

)

, (4.9)

Me =
g′2m′ sin(2θẽ)

16π4

2∑

ı=1

m2
ẽı

(m2
ẽı
− m′2)

ln

(
m2

ẽı

m′2

)
.

These results agree with literature [18, 21, 33].

From the scenarios SPA , see appendix C, the expression

m2
g̃

(m2
g̃ − m2

q̃ı
)
ln

(
m2

g̃

m2
q̃ı

)
(4.10)

has positive values. We can also see that mẽı > m′ and therefore we can use the equation

above in order to reproduce the mass pattern of these fermions.

The expression for the mass of s quark has a more complicated integral to be solved,

see figure 4 and eq. (4.6) turns into the following:

Ms =
g2
smg̃

16π4

2∑

α=1

{

R
(d)
1α R

(d)
2α

m2
g̃

(m2
g̃−m2

d̃α
)
ln

(
m2

g̃

m2
d̃α

)

+R
(d)
1α+2R

(d)
2α+2

m2
g̃

(m2
g̃−m2

d̃α+2

)
ln

(
m2

g̃

m2
d̃α+2

)

+
R

(d)
1α R

(d)
2α+2

(m2
d̃α
−m2

d̃α+2

)(m2
g̃−m2

d̃α
)(m2

d̃α+2

−m2
g̃)

(
δd
αα+2

)

LR
M2

SUSY

[

m2
d̃α

m2
d̃α+2

ln

(
m2

d̃α

m2
d̃α+2

)

+ m2
d̃α

m2
g̃ ln

(
m2

g̃

m2
d̃α

)
+ m2

d̃α+2
m2

g̃ ln

(
m2

d̃α+2

m2
g̃

)]}
. (4.11)

It is important to emphasize that the first two contribution to the mass of this quark

are the same as those in the mass expressions of u and d quarks. The third contribution

came from the flavor non-diagonal sfermion mass matrix contribution. As a result of small

mixing, the mass eigenstates are approximately equal to the flavor eigenstates and hence

approximate flavor eigenstates are propagating in the loop (squarks d̃1 and d̃3 or d̃2 and

d̃4), this mixing couples squark of different flavors (δd
13 and δd

24).

5. Conclusions

We showed that the extension of Z ′
2 symmetry to the squarks sector provide us with a

natural mechanism for explaining the chiral mass hierarchy pattern and also the mass
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Superfield Usual Particle Spin Superpartner Spin

V̂ ′ (U(1)) Vm 1 λB
1
2

V̂ ı (SU(2)) V ı
m 1 λı

A
1
2

V̂ a
c (SU(3)) Ga

m 1 g̃a 1
2

Q̂ı ∼ (3,2, 1/3) (uı, dı)L
1
2 (ũıL, d̃ıL) 0

ûc
ı ∼ (3∗,1,−4/3) ūc

ıL
1
2 ũc

ıL 0

d̂c
ı ∼ (3∗,1, 2/3)) d̄c

ıL
1
2 d̃c

ıL 0

L̂ı ∼ (1,2,−1) (νı, lı)L
1
2 (ν̃ıL, l̃ıL) 0

l̂cı ∼ (1,1, 2) l̄cıL
1
2 l̃cıL 0

Ĥ1 ∼ (1,2,−1) (H0
1 , H−

1 ) 0 (H̃0
1 , H̃−

1 ) 1
2

Ĥ2 ∼ (1,2, 1) (H+
2 , H0

2 ) 0 (H̃+
2 , H̃0

2 ) 1
2

Table 1: Particle content of MSSM.

gap between strange and non-strange quarks. The FCNC problems are under control

under R-parity invariance requirements and the breaking of Z ′
2 symmetry only by SUSY

soft terms. There is no need of further assumptions as the alignment between quark and

squark sectors or setting null entries for a particular mass matrix elements of squarks. The

requirement of non-invariance under Z ′
2 symmetry for the third family of quarks (squarks)

disconnects this family from the other two families of quarks (squarks). In the quark

sector this disconnection gives rise to the Chiral symmetry breaking only in the heavy

quarks sector (c, t and b) while the light quarks remain massless. For squarks sector the

family disconnection gives rise to a particular texture for the mass matrix consistent with

experimental bonds. Once Z ′
2 is softly broken the light fermions can interact with sfermions

and gauginos and they acquire masses by means of radiative mechanism. Thus we can give

a reasonable explanation of the mass gap between s quark and non strange quarks, even

in the case of all squarks are degenerate in mass7 at low energy. It is due to the fact that

the s quark can couple with two families of squarks while the u and d quarks can couple

only with one family.
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A. Notation

In this first appendix we show our notation to the Minimal Supersymmetric Model (MSSM).

A.1 The fields of MSSM

The particle content of the model is given at table (1). The families index for fermions are

7We get naturally ms > 4×md.
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ı,  = 1, 2, 3. The parentheses in the first column are the transformation properties under

the respective representation of (SU(3)C ,SU(2)L,U(1)Y ).

B. Interaction of fermion-sfermion-gauginos

We present the interactions of sfermions with gauginos.

The interaction between Quark-Squarks-Gluino are given by

Lqq̃g̃ = −ı
√

2
[
Q̃T aQ̄λa

C−Q̃T aQλa
C +ũcT aucλa

C−ũcT aucλa
C +d̃cT adcλa

C−d̃cT adcλa
C

]

(B.1)

in the basis of mass eigenstates we rewrite it as follow:

Lqq̃g̃ = −
√

2
∑

q=u,d

q̄ı

[
U qL∗

ı W q̃
sPR − U qR∗

ı W q̃
+3sPL

]
T ag̃aq̃s + h.c. , (B.2)

where T a are the SU(3)c generators, PL,R ≡ (1∓ γ5)/2, i, j, s = 1, 2 are generation indices.

In the gluino interaction, the flavor changing effects from soft broken terms M2
Q̃
, M2

Ũ
and

Au on the observable are introduced through the matrix W q̃.

To u-squark and d-squark we can write

Lqq̃g̃ = −
√

2
∑

q=u,d

gs T a
rs

[
q̄r (Rq̃

ı1PR −Rq̃
ı2PL) g̃a q̃ı,s + hc

]
(B.3)

The previously introduced intergeneration mixing effects in the squark sector give rise

to strong Flavor Changing effects in processes with neutral currents through the quark-

squark-gluino interaction Lagrangian, which can now be written in the squark mass eigen-

states basis as,

Lqq̃g̃ = −
√

2gsT
a
αu

(
R

(u)∗
1α

¯̃gaũ∗
αcuL+R

(d)∗
1α

¯̃gad̃∗αsuL−R
(u)∗
2α

¯̃gaũ∗
αcuR−R

(d)∗
2α

¯̃gad̃∗αsuR (B.4)

+ R
(u)∗
3α

¯̃gaũ∗
αtuL+R

(d)∗
3α

¯̃gad̃∗αbuL−R
(u)∗
4α

¯̃gaũ∗
αtuR−R

(d)∗
4α

¯̃gad̃∗αbuR

)
+h.c

with α = 1, 2, 3, 4. For simplicity, we will omit the color indices from now on.

On the other hand, the Feynmann rules between Lepton-Slepton-Gaugino is computed

from

L
χ̃l̃l

= −ı
√

2gT ı(L̃L̄λ̄ı
A − L̃Lλı

A) − ıg′√
2
(−1)(L̃L̄λ̄B − L̃LλB)

− ıg′√
2
2(l̃clcλ̄B − l̃clcλB) , (B.5)

in terms of masses eigenstates we get the following interaction to Lepton-Slepton-Neutralino

L
ll̃χ̃0 =

(
χ̃0
)

l
(GeL

ıslPL + GeR

ıslPR)ẽ†seı + h.c. ,

(B.6)

where

GeL

ısl = GeL

l W ẽ⋆
ıs − g√

2MW cos β
meıZ

⋆
l3W

ẽ⋆
(ı+3)s,

GeR

ısl = GeR

l W ẽ⋆
(ı+3)s −

g√
2MW cos β

meıZl3W
ẽ⋆
ıs . (B.7)

– 15 –



J
H
E
P
0
1
(
2
0
0
8
)
0
7
2

0

100

200

300

400

500

600

700

800

m [GeV]

l̃R

l̃L
ν̃l

τ̃1

τ̃2

χ̃0
1

χ̃0
2

χ̃0
3

χ̃0
4

χ̃±

1

χ̃±

2
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Figure 5: The SUSY particle spectra for the benchmark points corresponding to SPS 1a [30].
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Figure 6: The SUSY particle spectra for the benchmark points corresponding to SPS 1b [30].

C. SPA convention

The Supersymmetry Parameter Analysis project (SPA) is a comparative study of super-

symmetric particle spectra calculated for various SUSY scenarios [29 – 31]. The definition

of several scenarios are given at [30, 29].

The figures 5, 6, 7, 8 show the particle spectra corresponding to SPS1a, SPS1b and

SPS3 [30], where the gluinos are the heavy particles. Also in the scenarios SPS5, SPS6,

SPS7 and SPS9 the gluinos are also the heaviest particles. Thus, it is simple to show that

eq. (4.10) has positive values. We can also see that mẽı > m′ and therefore we can use the

equation above in order to reproduce the mass pattern of these fermions.

At the scenarios SPS2 and SPS8 the gluino are the lightest colored particle and in

the last scenario SPS4 we know that mg̃ < mq̃L,q̃R
then in both case eq. (4.10) still have

positive values.

D. Feynman integration

We define the following two point function in following way

B0(p
2
1,m

2
1,m

2
2) = −16πı

∫
d4k

(2π)4
1

[(k + p1)2 − m2
1][k

2 − m2
2]

, (D.1)
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Figure 7: The SUSY particle spectra for the benchmark points corresponding to SPS 2 [30].
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Figure 8: The SUSY particle spectra for the benchmark points corresponding to SPS 3 [30].

when the external momentum of the particle is zero, we use the following convention

B0(0,m
2
1,m

2
2) ≡ B0(m1,m2). Perform the integral we get the following result [34]

B0(m1,m2) = 1 + ln

(
Q2

m2
2

)
+

m2
1

m2
2 − m2

1

ln

(
m2

2

m2
1

)
, (D.2)

where Q is the renormalization scale. After absorb the divergent terms we can rewrite our

result as

B0(m1,m2) =
m2

1

m2
2 − m2

1

ln

(
m2

2

m2
1

)
=

m2
1

m2
1 − m2

2

ln

(
m2

1

m2
2

)
. (D.3)

It reproduces the very known results presented at [17 – 21, 33, 35].

Now, we are going to analyze the third integral on eq. (4.6). It is an integral of the

following form

I(m1,m2,m3) =

∫
d4p

(2π)4
1

(p2 − m2
1)

1

(p2 − m2
2)

1

(p2 − m2
3)

, (D.4)

One uses eq. (D.1) in order to rewrite eq. (D.4) in the following way

I(m1,m2,m3) =
1

m2
1 − m2

2

(B0(m1,m3) − B0(m2,m3)) . (D.5)
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We can also apply eq. (D.3) to show that

I(m1,m2,m3) =
1

(m2
1 − m2

2)(m
2
1 − m2

3)(m
2
2 − m2

3)

[
m2

1m
2
2 ln

(
m2

1

m2
2

)
(D.6)

+ m2
1m

2
3 ln

(
m2

3

m2
1

)
+m2

2m
2
3 ln

(
m2

2

m2
3

)]
.

These results are the same as the function F (x, y, z) of refs. [19, 20].
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